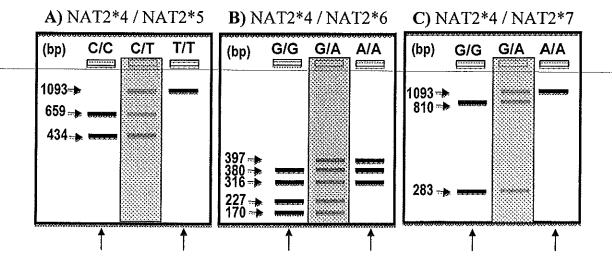
27th International Biology Olympiad

17th-23rd July, 2016 Hanoi, Vietnam


Practical Exam 4 **MOLECULAR BIOLOGY**

ANSWER KEYS with **SCORING SCHEME**

Total points: 100 points

Timamily

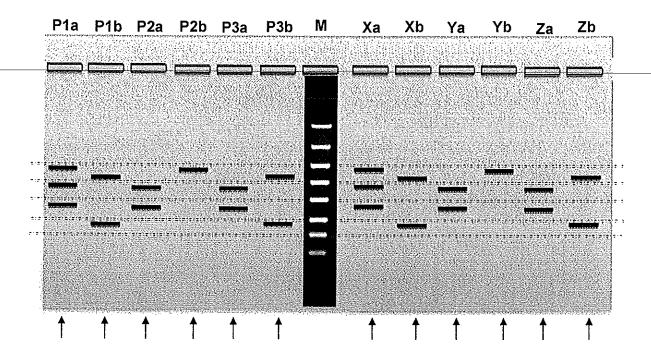
Q.1.1 (12 points)

Scoring scheme:

- + Scored per lane (2.0 points/lane)
- + For each lane, both the number of bands and the position of each band must be correct.

Total points: 2.0 points x 6 lanes = 12 points

Q.1.2 (5 points)

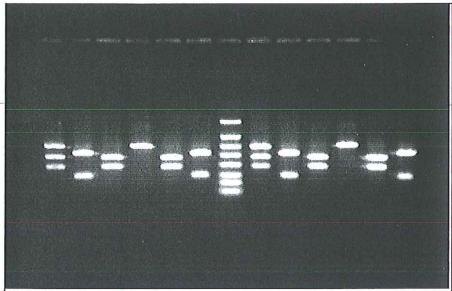

Reagents (in μL)	NAT2*4 / NAT2*5 (labelled a)	NAT2*4 / NAT2*7 (labelled b)
Sterile water (W)	4.5	4.5
10 x Restriction Buffer (BF)	1	1
PCR products of genomic DNA (2.0 μg/μL)	3.5	3.5
RE 1 (Kpnl)	1	
RE 2 (BamHI)	-	1
Total volume (μL)	10	10
The second secon	†	^

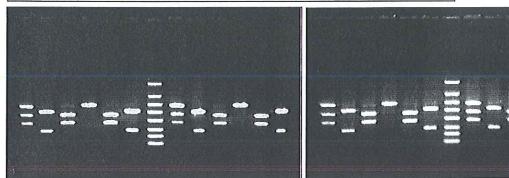
Scoring scheme:

- + Scored per box (cell).
- + 0 points to the first two correct boxes;
- + 0.5 point is given for each correct box from the third correct one.

Total points: 0.5 points x 10 boxes = 5 points

Q.2.1. Drawing of gel (1.5 points x 12 lanes = 18 points)




Scoring scheme:

- + Scored per lane (1.5 points/lane)
- + The number of bands and the vertical position of each band must correspond to the photographed gel (Q.2.2.) and to the pre-printed ladder (M).

Total points: 1.5 points x 12 lanes = 18 points

Q.2.2. Photo (26 points)

Scoring scheme:

+

+ Scored per lane (2.0 points/lane)

+ For sample lanes:

-	Complete digestion (see above):	2.0 points
-	Partial digestion or Missed bands:	1.0 points
-	Un-digestion or Unspecific bands:	0.5 points
-	No band (unloading sample):	0.0 points
F	or the ladder (M) lane:	
-	Apparently (8) separate bands (see above):	2.0 points
	Loading in wrong positions (with separate bands):	1.0 points
-	Missed band(s) or fused band(s):	0.5 points
-	No band (unloading sample):	0.0 points

Total points: 2.0 points x 13 lanes = 26 points

Q.3.1. (9 points)

Patients	Biopsy specimens (X, Y or Z)
P1	x
P2	У
P3	z

Scoring scheme:

- + Scored per matching (3.0 points/correct matching)
- + Must be evidenced by the gel image (Q.2.1 or Q.2.2)

Total score: 3 points x 3 correct matches = 9 points

Q.4.1. (9 points)

Patients	Genotype at C481T	Genotype at G590A	Genotype at G857A
P1	C/T	G/G	G/G
P2	C/C	G/A	A/A
P3	C//C	G/G	G/G

Scoring scheme:

- + Scored per box (1.5 points/box)
- + Must be evidenced by the gel image (Q.2.1 or Q.2.2)

Total score: 1.5 points x 6 correct boxes = 9 points

Q.4.2. (3 points)

Patients	Slow acetylator	Intermediate acetylator	Rapid acetylator
P1			
P2			
P3			×.

Scoring scheme:

- + Scored per matching; 1.0 point/correct match
- + Must correspond to the genotypes in Q.4.1

Total score: 1.0 points x 3 patients = 3 points

Q.5.1. (6 points)

Patients	INH concentration (mg/L)		
P1	4.548		
P2	6.821		
P3	2275		

Scoring scheme:

- + Scored per box (2.0 points/box)
- + 1.0 points penalty for each number not presented to 3 decimal digits.
- + Must correspond to the phenotypes in Q.4.2

Total score: 2.0 points x 3 correct determinants = 6 points

Q.5.2. (12 points)

Patients	Oral dosage (number of tablets per day)			
P1	2 or 3			
P2	.			
P3	4			

Scoring scheme:

- + Scored per box (4.0 points/box)
- + 2.0 points penalty for each number not presented in integer.
- + Must correspond to the INH concentration in Q.5.1

Total score: 4.0 points x 3 correct determinants = 12 points

 END OF	ANSWER	KEYS &	SCORING	SCHEME	
LIVD OI	I II I I I I I I I I I I I I I I I I I	ILL I D W	DOOLGING	DOTTETTE	